Home > manopt > manifolds > fixedrank > fixedrankfactory_2factors_subspace_projection.m

fixedrankfactory_2factors_subspace_projection

PURPOSE ^

Manifold of m-by-n matrices of rank k with two factor quotient geometry.

SYNOPSIS ^

function M = fixedrankfactory_2factors_subspace_projection(m, n, k)

DESCRIPTION ^

 Manifold of m-by-n matrices of rank k with two factor quotient geometry.

 function M = fixedrankfactory_2factors_subspace_projection(m, n, k)

 A point X on the manifold is represented as a structure with two
 fields: L and R. The matrix L (mxk) is orthonormal,
 while the matrix R (nxk) is a full column-rank
 matrix such that X = L*R'.

 Tangent vectors are represented as a structure with two fields: L, R.

 Note: L is orthonormal, i.e., columns are orthogonal to each other.
 Such a geometry might be of interest where the left factor has a
 subspace interpretation. A motivation is in Sections 3.3 and 6.4 of the
 paper below.

 Please cite the Manopt paper as well as the research paper:
     @Article{mishra2014fixedrank,
       Title   = {Fixed-rank matrix factorizations and {Riemannian} low-rank optimization},
       Author  = {Mishra, B. and Meyer, G. and Bonnabel, S. and Sepulchre, R.},
       Journal = {Computational Statistics},
       Year    = {2014},
       Number  = {3-4},
       Pages   = {591--621},
       Volume  = {29},
       Doi     = {10.1007/s00180-013-0464-z}
     }

 See also: fixedrankfactory_2factors fixedrankembeddedfactory fixedrankfactory_2factors_preconditioned

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SUBFUNCTIONS ^

SOURCE CODE ^

0001 function M = fixedrankfactory_2factors_subspace_projection(m, n, k)
0002 % Manifold of m-by-n matrices of rank k with two factor quotient geometry.
0003 %
0004 % function M = fixedrankfactory_2factors_subspace_projection(m, n, k)
0005 %
0006 % A point X on the manifold is represented as a structure with two
0007 % fields: L and R. The matrix L (mxk) is orthonormal,
0008 % while the matrix R (nxk) is a full column-rank
0009 % matrix such that X = L*R'.
0010 %
0011 % Tangent vectors are represented as a structure with two fields: L, R.
0012 %
0013 % Note: L is orthonormal, i.e., columns are orthogonal to each other.
0014 % Such a geometry might be of interest where the left factor has a
0015 % subspace interpretation. A motivation is in Sections 3.3 and 6.4 of the
0016 % paper below.
0017 %
0018 % Please cite the Manopt paper as well as the research paper:
0019 %     @Article{mishra2014fixedrank,
0020 %       Title   = {Fixed-rank matrix factorizations and {Riemannian} low-rank optimization},
0021 %       Author  = {Mishra, B. and Meyer, G. and Bonnabel, S. and Sepulchre, R.},
0022 %       Journal = {Computational Statistics},
0023 %       Year    = {2014},
0024 %       Number  = {3-4},
0025 %       Pages   = {591--621},
0026 %       Volume  = {29},
0027 %       Doi     = {10.1007/s00180-013-0464-z}
0028 %     }
0029 %
0030 % See also: fixedrankfactory_2factors fixedrankembeddedfactory fixedrankfactory_2factors_preconditioned
0031 
0032 
0033 
0034 % This file is part of Manopt: www.manopt.org.
0035 % Original author: Bamdev Mishra, Dec. 30, 2012.
0036 % Contributors:
0037 % Change log:
0038 %
0039 %    Apr. 18, 2018 (NB):
0040 %        Removed lyap dependency.
0041 %    Aug. 31, 2018 (NB):
0042 %        Improved efficiency of nested_sylvester using lyapunov_symmetric_eig.
0043 %    Sep.  6, 2018 (NB):
0044 %        Removed M.exp() as it was not implemented.
0045     
0046     M.name = @() sprintf('LR'' quotient manifold of %dx%d matrices of rank %d', m, n, k);
0047     
0048     M.dim = @() (m+n-k)*k;
0049     
0050     % Some precomputations at the point X to be used in the inner product (and
0051     % pretty much everywhere else).
0052     function X = prepare(X)
0053         if ~all(isfield(X,{'RtR'}) == 1)
0054             X.RtR = X.R'*X.R;
0055         end
0056     end
0057     
0058     % The choice of the metric is motivated by symmetry and scale
0059     % invariance in the total space.
0060     M.inner = @iproduct;
0061     function ip = iproduct(X, eta, zeta)
0062         X = prepare(X);
0063         
0064         ip = eta.L(:).'*zeta.L(:)  + trace(X.RtR\(eta.R'*zeta.R));
0065     end
0066     
0067     M.norm = @(X, eta) sqrt(M.inner(X, eta, eta));
0068     
0069     M.dist = @(x, y) error('fixedrankfactory_2factors_subspace_projection.dist not implemented yet.');
0070     
0071     M.typicaldist = @() 10*k;
0072     
0073     skew = @(X) .5*(X-X');
0074     symm = @(X) .5*(X+X');
0075     stiefel_proj = @(L, H) H - L*symm(L'*H);
0076     
0077     M.egrad2rgrad = @egrad2rgrad;
0078     function rgrad = egrad2rgrad(X, egrad)
0079         X = prepare(X);
0080         
0081         rgrad.L = stiefel_proj(X.L, egrad.L);
0082         rgrad.R = egrad.R*X.RtR;
0083     end
0084     
0085     
0086     M.ehess2rhess = @ehess2rhess;
0087     function Hess = ehess2rhess(X, egrad, ehess, eta)
0088         X = prepare(X);
0089         
0090         % Riemannian gradient.
0091         rgrad = egrad2rgrad(X, egrad);
0092         
0093         % Directional derivative of the Riemannian gradient.
0094         Hess.L = ehess.L - eta.L*symm(X.L'*egrad.L);
0095         Hess.L = stiefel_proj(X.L, Hess.L);
0096         
0097         Hess.R = ehess.R*X.RtR + 2*egrad.R*symm(eta.R'*X.R);
0098         
0099         % Correction factor for the non-constant metric on the factor R.
0100         Hess.R = Hess.R - rgrad.R*(X.RtR\(symm(X.R'*eta.R))) - eta.R*(X.RtR\(symm(X.R'*rgrad.R))) + X.R*(X.RtR\(symm(eta.R'*rgrad.R)));
0101         
0102         % Projection onto the horizontal space.
0103         Hess = M.proj(X, Hess);
0104     end
0105     
0106     
0107     M.proj = @projection;
0108     function etaproj = projection(X, eta)
0109         X = prepare(X);
0110         
0111         eta.L = stiefel_proj(X.L, eta.L); % On the tangent space.
0112         SS = X.RtR;
0113         AS1 = 2*X.RtR*skew(X.L'*eta.L)*X.RtR;
0114         AS2 = 2*skew(X.RtR*(X.R'*eta.R));
0115         AS  = skew(AS1 + AS2);
0116         
0117         Omega = nested_sylvester(SS, AS);
0118         etaproj.L = eta.L - X.L*Omega;
0119         etaproj.R = eta.R - X.R*Omega;
0120     end
0121     
0122     M.tangent = M.proj;
0123     M.tangent2ambient = @(X, eta) eta;
0124     
0125     M.retr = @retraction;
0126     function Y = retraction(X, eta, t)
0127         if nargin < 3
0128             t = 1.0;
0129         end
0130         Y.L = uf(X.L + t*eta.L);
0131         Y.R = X.R + t*eta.R;
0132         
0133         % These are reused in the computation of the gradient and Hessian.
0134         Y = prepare(Y);
0135     end
0136     
0137     
0138     M.hash = @(X) ['z' hashmd5([X.L(:) ; X.R(:)])];
0139     
0140     M.rand = @random;
0141     % Factors L lives on Stiefel manifold, hence we will reuse
0142     % its random generator.
0143     stiefelm = stiefelfactory(m, k);
0144     function X = random()
0145         X.L = stiefelm.rand();
0146         X.R = randn(n, k);
0147     end
0148     
0149     M.randvec = @randomvec;
0150     function eta = randomvec(X)
0151         eta.L = randn(m, k);
0152         eta.R = randn(n, k);
0153         eta = projection(X, eta);
0154         nrm = M.norm(X, eta);
0155         eta.L = eta.L / nrm;
0156         eta.R = eta.R / nrm;
0157     end
0158     
0159     M.lincomb = @lincomb;
0160     
0161     M.zerovec = @(X) struct('L', zeros(m, k),...
0162         'R', zeros(n, k));
0163     
0164     M.transp = @(x1, x2, d) projection(x2, d);
0165     
0166     % vec and mat are not isometries, because of the scaled inner metric.
0167     M.vec = @(X, U) [U.L(:) ; U.R(:)];
0168     M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ...
0169         'R', reshape(u((m*k+1):end), n, k));
0170     M.vecmatareisometries = @() false;
0171     
0172     
0173 end
0174 
0175 % Linear combination of tangent vectors.
0176 function d = lincomb(x, a1, d1, a2, d2) %#ok<INLSL>
0177     
0178     if nargin == 3
0179         d.L = a1*d1.L;
0180         d.R = a1*d1.R;
0181     elseif nargin == 5
0182         d.L = a1*d1.L + a2*d2.L;
0183         d.R = a1*d1.R + a2*d2.R;
0184     else
0185         error('Bad use of fixedrankfactory_2factors_subspace_projection.lincomb.');
0186     end
0187     
0188 end
0189 
0190 function A = uf(A)
0191     [L, unused, R] = svd(A, 0); %#ok
0192     A = L*R';
0193 end
0194 
0195 function omega = nested_sylvester(sym_mat, asym_mat)
0196     % omega = nested_sylvester(sym_mat, asym_mat)
0197     % This function solves the system of nested Sylvester equations:
0198     %
0199     %     X*sym_mat + sym_mat*X = asym_mat
0200     %     omega*sym_mat+sym_mat*omega = X
0201     %
0202     % Mishra, Meyer, Bonnabel and Sepulchre,
0203     % 'Fixed-rank matrix factorizations and Riemannian low-rank optimization'
0204     
0205     % Solve each Lyapunov equation efficiently, exploiting the fact
0206     % that it is twice the same sym_mat matrix that comes into play.
0207     [V, lambda] = eig(sym_mat, 'vector');
0208     X = lyapunov_symmetric_eig(V, lambda, asym_mat);
0209     omega = lyapunov_symmetric_eig(V, lambda, X);
0210     
0211 end

Generated on Mon 10-Sep-2018 11:48:06 by m2html © 2005