## PURPOSE

Test AD for a real optimization problem on a power manifold (cell)

## DESCRIPTION

` Test AD for a real optimization problem on a power manifold (cell)`

## CROSS-REFERENCE INFORMATION

This function calls:
• manoptAD Preprocess automatic differentiation for a manopt problem structure
• spherefactory Returns a manifold struct to optimize over unit-norm vectors or matrices.
• trustregions Riemannian trust-regions solver for optimization on manifolds.
• checkgradient Checks the consistency of the cost function and the gradient.
• checkhessian Checks the consistency of the cost function and the Hessian.
• powermanifold Returns a structure describing a power manifold M^n = M x M x ... x M.
This function is called by:

## SOURCE CODE

```0001 function realtest_AD2()
0002 % Test AD for a real optimization problem on a power manifold (cell)
0003
0004     % Verify that Manopt was indeed added to the Matlab path.
0005     if isempty(which('spherefactory'))
0006         error(['You should first add Manopt to the Matlab path.\n' ...
0008     end
0009
0010     % Verify that the deep learning tool box was installed
0011     assert(exist('dlarray', 'file') == 2, ['Deep learning tool box is '...
0012     'needed for automatic differentiation.\n Please install the'...
0014     ' R2021b if possible.'])
0015
0016     % Generate the problem data.
0017     n = 100;
0018     A = randn(n);
0019     A = .5*(A+A');
0020
0021     % Create the power manifold
0022     S = spherefactory(n);
0023     problem.M = powermanifold(S,2);
0024
0025     % Define the problem cost function
0026     problem.cost  = @(X) -X{1}'*(A*X{2});
0027
0028     % Define the gradient and the hessian via automatic differentiation
0030
0031     % Numerically check gradient and Hessian consistency.
0032     figure;
0034     figure;
0035     checkhessian(problem);
0036
0037     % Solve.
0038     [x, xcost, info] = trustregions(problem);          %#ok<ASGLU>
0039
0040     % Test
0041     ground_truth = svd(A);
0042     distance = abs(ground_truth(1) - (-problem.cost(x)));
0043     fprintf('The distance between the ground truth and the solution is %e \n',distance);
0044
0045
0046 end```

Generated on Fri 30-Sep-2022 13:18:25 by m2html © 2005